Minggu, 05 Februari 2012

ULASAN MOTOR 3 FASA

rangkaian motor 3 fasa forward-reverse otomatis

Prosedur mengoperasikan forward reverse otomatis:



1.      MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.      Tekan tombol „START-STOP“ untuk tekanan ke 1 maka Motor 3 Fasa bekerja dengan arah putaran maju (Forward) yang ditandai lampu indikator menyala berwarna merah. Setelah beberapa detik sesuai dengan pengesetan Time Delay Relay (T1) maka Motor 3 Fasa mati dan T2 bekerja untuk menunda waktu
3.      Setelah Delay T2 habis maka Motor listrik 3 Fasa berputar mudur (Reverse) yang ditandai dengan menyala lampu warna hijau dan T3 bekerja menunda waktu sesuai pengesetan
4.      Apabila Setting T3 telah habis maka Motor 3 Fasa mati, dan T4 bekerja untuk menunda waktu
5.      Setelah Delay T4 habis maka Motor listrik 3 Fasa kembali berputar maju (Forward). Demikian seterusnya
6.      Untuk mematikan Motor 3 Fasa, tekan tombol „START-STOP“. Untuk tekanan ke 2


Kejadian khusus:

1.        Apabila  rangkaian forward reverse initerjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
        2.        Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan     ditandai menyala lampu berwarna kuning. Dan untuk mengaktifkan kembali tekan tombol reset

Related Posts by Categories

rangkaian motor 3 fasa forward-reverse otomatis

Prosedur mengoperasikan forward reverse otomatis:



1.      MCB di set pada posisi „ON“ dengan cara menaikkan lidah MCB ke atas
2.      Tekan tombol „START-STOP“ untuk tekanan ke 1 maka Motor 3 Fasa bekerja dengan arah putaran maju (Forward) yang ditandai lampu indikator menyala berwarna merah. Setelah beberapa detik sesuai dengan pengesetan Time Delay Relay (T1) maka Motor 3 Fasa mati dan T2 bekerja untuk menunda waktu
3.      Setelah Delay T2 habis maka Motor listrik 3 Fasa berputar mudur (Reverse) yang ditandai dengan menyala lampu warna hijau dan T3 bekerja menunda waktu sesuai pengesetan
4.      Apabila Setting T3 telah habis maka Motor 3 Fasa mati, dan T4 bekerja untuk menunda waktu
5.      Setelah Delay T4 habis maka Motor listrik 3 Fasa kembali berputar maju (Forward). Demikian seterusnya
6.      Untuk mematikan Motor 3 Fasa, tekan tombol „START-STOP“. Untuk tekanan ke 2


Kejadian khusus:

1.        Apabila  rangkaian forward reverse initerjadi hubung singkat (short Circuit) maka MCB akan trip. Untuk mengaktifkan kembali reset ke posisi „ON“
        2.        Dan bila terjadi beban lebih maka Thermal Overload Relay akan „Trip“ dengan     ditandai menyala lampu berwarna kuning. Dan untuk mengaktifkan kembali tekan tombol reset

Related Posts by Categories

PENGERTIAN KONTAKTOR DAN TOR


PENGERTIAN KONTAKTOR

Kontaktor ataupun koil merupakan saklar daya yang bekerja berdasarkan kemagnitan. Bila koil (kumparan magnit) dialiri arus listrik, maka inti magnit menjadi jangkar, sekaligus menarik kontak-kontak yang bergerak, sehingga kontak NO (normally open) menjadi sambung, dan kontak NC (normally close) menjadi lepas dan jangkar saat ditarik inti magnit tidak bergetar yang menimbulkan bunyi dengung (karena pada arus bolak-balik magnit menarik dan melepas jangkar sehingga menimbulkan getaran).
Koil atau Kontaktor terdiri dari 2 kontak yaitu kontak bantu dan kontak utama.
Kontak bantu : kontak / saklar / swict yang digunakan untuk pengontrol ( arus kecil ) dengan kode angka; 13-14, 21-22, 43-44,31-32.
Kontak utama : kontak yang mampu dialiri arus secara maksimal (arus besar ) dengan kode angka ; 1-2, 3-4, 5-6.

Lampu pijar

Lampu pijar

Lampu pijar dan filamennya yang sedang menyala.
Lampu pijar adalah sumber cahaya buatan yang dihasilkan melalui penyaluran arus listrik melalui filamen yang kemudian memanas dan menghasilkan cahaya.[1] Kaca yang menyelubungi filamen panas tersebut menghalangi udara untuk berhubungan dengannya sehingga filamen tidak akan langsung rusak akibat teroksidasi.[2]
Lampu pijar dipasarkan dalam berbagai macam bentuk[3] dan tersedia untuk tegangan (voltase) kerja yang bervariasi dari mulai 1,25 volt[4] hingga 300 volt.[5] Energi listrik yang diperlukan lampu pijar untuk menghasilkan cahaya yang terang lebih besar dibandingkan dengan sumber cahaya buatan lainnya seperti lampu pendar dan diode cahaya, maka secara bertahap pada beberapa negara peredaran lampu pijar mulai dibatasi.[6][7]
Di samping memanfaatkan cahaya yang dihasilkan, beberapa penggunaan lampu pijar lebih memanfaatkan panas yang dihasilkan, contohnya adalah pemanas kandang ayam, [8] dan pemanas inframerah dalam proses pemanasan di bidang industri.

Daftar isi

 [sembunyikan

[sunting] Sejarah

Pengembangan lampu pijar sudah dimulai pada awal abad XIX.[2][9][10][11] Sejarah lampu pijar dapat dikatakan telah dimulai dengan ditemukannya tumpukan volta oleh Alessandro Volta.[10] Pada tahun 1802, Sir Humphry Davy menunjukkan bahwa arus listrik dapat memanaskan seuntai logam tipis hingga menyala putih[2]. Lalu, pada tahun 1820, Warren De la Rue merancang sebuah lampu dengan cara menempatkan sebuah kumparan logam mulia platina di dalam sebuah tabung lalu mengalirkan arus listrik melaluinya.[9] Hanya saja, harga logam platina yang sangat tinggi menghalangi pendayagunaan penemuan ini lebih lanjut.[9][11] Elemen karbon juga sempat digunakan, namun karbon dengan cepat dapat teroksidasi di udara; oleh karena itu, jawabannya adalah dengan menempatkan elemen dalam vakum.[2]
Pada tahun 1870-an, seorang penemu bernama Thomas Alva Edison dari Menlo Park, negara bagian New Jersey, Amerika Serikat, mulai ikut serta dalam usaha merancang lampu pijar.[2][9] Dengan menggunakan elemen platina, Edison mendapatkan paten pertamanya pada bulan April 1879.[2] Rancangan ini relatif tidak praktis namun Edison tetap berusaha mencari elemen lain yang dapat dipanaskan secara ekonomis dan efisien.[2] Pada tahun yang sama, Sir Joseph Wilson Swan juga menciptakan lampu pijar yang dapat bertahan selama 13,5 jam.[11] Sebagian besar filamen lampu pijar yang diciptakan pada saat itu putus dalam waktu yang sangat singkat sehingga tidak berarti secara komersial.[2] Untuk menyelesaikan masalah ini, Edison kembali mencoba menggunakan untaian karbon yang ditempatkan dalam bola lampu hampa udara hingga pada tanggal 19 Oktober 1879 dia berhasil menyalakan lampu yang mampu bertahan selama 40 jam.[2]

[sunting] Konstruksi

Komponen utama dari lampu pijar adalah bola lampu yang terbuat dari kaca, filamen yang terbuat dari wolfram, dasar lampu yang terdiri dari filamen, bola lampu, gas pengisi, dan kaki lampu.[12]
Incandescent light bulb.svg
  1. Bola lampu
  2. Gas bertekanan rendah (argon, neon, nitrogen)
  3. Filamen wolfram
  4. Kawat penghubung ke kaki tengah
  5. Kawat penghubung ke ulir
  6. Kawat penyangga
  7. Kaca penyangga
  8. Kontak listrik di ulir
  9. Sekrup ulir
  10. Isolator
  11. Kontak listrik di kaki tengah

[sunting] Bola lampu

Selubung gelas yang menutup rapat filamen suatu lampu pijar disebut dengan bola lampu. Macam-macam bentuk bola lampu antara lain adalah bentuk bola, bentuk jamur, bentuk lilin, dan bentuk lustre.[13] Warna bola lampu antara lain yaitu bening, warna susu atau buram, dan warna merah, hijau, biru, atau kuning.[13]

[sunting] Gas pengisi

Pada awalnya bagian dalam bola lampu pijar dibuat hampa udara namun belakangan diisi dengan gas mulia bertekanan rendah seperti argon, neon, kripton, dan xenon atau gas yang bersifat tidak reaktif seperti nitrogen sehingga filamen tidak teroksidasi.[1] Konstruksi lampu halogen juga menggunakan prinsip yang sama dengan lampu pijar biasa[1], perbedaannya terletak pada gas halogen yang digunakan untuk mengisi bola lampu.

[sunting] Kaki lampu

Dua jenis kaki lampu adalah kaki lampu berulir dan kaki lampu bayonet yang dapat dibedakan dengan kode huruf E (Edison) dan B (Bayonet), diikuti dengan angka yang menunjukkan diameter kaki lampu dalam milimeter seperti E27 dan E14.[12]

[sunting] Operasi

Pada dasarnya filamen pada sebuah lampu pijar adalah sebuah resistor.[1] Saat dialiri arus listrik, filamen tersebut menjadi sangat panas, berkisar antara 2800 derajat Kelvin hingga maksimum 3700 derajat Kelvin.[14]. Ini menyebabkan warna cahaya yang dipancarkan oleh lampu pijar biasanya berwarna kuning kemerahan.[15] Pada temperatur yang sangat tinggi itulah filamen mulai menghasilkan cahaya pada panjang gelombang yang kasatmata.[1] Hal ini sejalan dengan teori radiasi benda hitam.[16]
Indeks renderasi warna menyatakan apakah warna obyek tampak alami apabila diberi cahaya lampu tersebut dan diberi nilai antara 0 sampai 100.[12] Angka 100 artinya warna benda yang disinari akan terlihat sesuai dengan warna aslinya. Indeks renderasi warna lampu pijar mendekati 100.[12][17]
Foto yang sangat diperbesar dari filamen lampu pijar 200 Watt.

[sunting] Lampu putus

Karena temperatur kerja filamen lampu pijar yang sangat tinggi, lambat laun akan terjadi penguapan pada filamen.[1] Variasi pada resistansi sepanjang filamen akan menciptakan titik-titik panas pada posisi dengan nilai resistansi tertinggi.[18]. Pada titik-titik panas tersebut filamen wolfram akan menguap lebih cepat yang mengakibatkan ketebalan filamen akan semakin tidak merata dan nilai resistansi akan meningkat secara lokal; ini akan menyebabkan filamen pada titik tersebut meleleh atau menjadi lemah lalu putus.[1] Variasi diameter sebesar 1% akan menyebabkan penurunan umur lampu pijar hingga 25%.[19]
Selain menyebabkan putusnya lampu, penguapan filamen wolfram juga menyebabkan penghitaman lampu. Elemen wolfram yang menguap pada lampu pijar akan mengendap pada dinding kaca bola lampu dan membentuk efek hitam. [20] Lampu halogen menghambat proses ini dengan proses siklus halogen.[20]

[sunting] Efisiensi

Efisiensi lampu atau dengan kata lain disebut dengan efikasi luminus[12] adalah nilai yang menunjukkan besar efisiensi pengalihan energi listrik ke cahaya dan dinyatakan dalam satuan lumen per Watt. Kurang lebih 90% daya yang digunakan oleh lampu pijar dilepaskan sebagai radiasi panas dan hanya 10% yang dipancarkan dalam radiasi cahaya kasat mata.[21]
Pada tegangan 120 volt, nilai keluaran cahaya lampu pijar 100W biasanya adalah 1.750 lumen, maka efisiensinya adalah 17,5 lumen per Watt.[22] Sementara itu pada tegangan 230 volt seperti yang digunakan di Indonesia, nilai keluaran bolam 100W adalah 1.380 lumen[23] atau setara dengan 13,8 lumen per Watt. Nilai ini sangatlah rendah bila dibandingkan dengan nilai keluaran sumber cahaya putih "ideal" yaitu 242,5 lumen per Watt, atau 683 lumen per Watt untuk cahaya pada panjang gelombang hijau-kuning di mana mata manusia sangatlah peka.[1] Efisiensi yang sangat rendah ini disebabkan karena pada temperatur kerja, filamen wolfram meradiasikan sejumlah besar radiasi inframerah.
Pada tabel di bawah ini terdaftar tingkat efisiensi pencahayaan beberapa jenis lampu pijar biasa bertegangan 120 volt[22] dan beberapa sumber cahaya ideal.
Jenis Efisiensi lampu lumen/Watt
Lampu pijar 40 Watt 1.9% 12.6[22]
Lampu pijar 60 Watt 2.1% 14.5[22]
Lampu pijar 100 Watt 2.6% 17.5[22]
Radiator benda hitam 4000 K ideal 7.0% 47.5[24]
Radiator benda hitam 7000 K ideal 14% 95[24]
Sumber cahaya monokromatis 555 nm (hijau) ideal 100% 683[1][25]
Karena efisiensi lampu pijar yang sangat rendah, beberapa pemerintah negara mulai membatasi peredaran lampu pijar. Contoh negara-negara yang mulai membatasinya adalah Australia[26], Amerika Serikat[7], Brasil[7], Inggris Raya[7], Irlandia[7], Kanada[7], Kuba[7], Selandia Baru[7], Swiss[7], Uni Eropa[7] dan Venezuela[7].

sejarah listrik

Sejarah Listrik

Sejarah awal ditemukannya listrik adalah oleh seorang cendikiawan Yunani yang bernama Thales, yang mengemungkakan fenomena batu ambar yang bila digosok - gosokkan akan dapat menarik bulu sebagai fenomena listrik. Kemudian setelah bertahun - tahun semenjak ide Thales dikemukakan, baru kemudian muncul lagi penapat - pendapat serta teori -teori baru mengenai listrik seperti yang diteliti dan dikemukakan oleh William Gilbert, Joseph priestley, Charles De Coulomb, AmpereMichael Farraday, Oersted, dll.

informasi tentang sejarah penemu listrik ini disajikan dalam bentu panel dan didukung dengan perangkat audio visual yang menyajikan tiruan dari percobaan - percobaan yang pernah dilakukan oleh para ilmuan.

Ben Franklin
Banyak orang berpikir Benyamin Franklin menemukan listrik terkenal dengan layang-layang percobaan pada 1752, namun
listrik tidak ditemukan sekaligus. Pada awalnya, listrik dikaitkan dengan cahaya.
Orang ingin yang murah dan aman cara untuk cahaya rumah mereka, dan para ilmuwan berpikir listrik mungkin jalan.

Baterai

Belajar bagaimana memproduksi dan menggunakan listrik tidak mudah. Untuk waktu yang lama ada
ada sumber diandalkan listrik untuk percobaan. Akhirnya, pada tahun 1800, Alessandro Volta, seorang ilmuwan Italia, membuat penemuan besar. dia basah kuyup
kertas dalam air garam, seng dan tembaga ditempatkan di sisi berlawanan dari kertas, dan mengamati reaksi kimia menghasilkan arus listrik. Volta telah
menciptakan sel listrik pertama. Dengan menghubungkan banyak dari sel-sel ini bersama-sama, Volta mampu "string saat ini" dan membuat baterai. Hal ini untuk menghormati Volta bahwa kita mengukur daya baterai dalam volt. Akhirnya, sumber yang aman dan dapat diandalkan listrik tersedia, sehingga mudah bagi para ilmuwan untuk mempelajari listrik.

Seorang ilmuwan Inggris, Michael Faraday, adalah orang pertama yang menyadari bahwa
arus listrik dapat dihasilkan dengan melewatkan magnet melalui
kawat tembaga. Itu adalah penemuan yang menakjubkan. Hampir semua listrik
kita gunakan saat ini dibuat dengan magnet dan kumparan dari kawat tembaga di raksasa
pembangkit listrik.
Kedua generator listrik dan motor listrik didasarkan pada ini
prinsip. Sebuah generator mengubah energi gerak menjadi listrik. Sebuah
Motor mengubah energi listrik menjadi energi gerak.


Thomas Edison
n 1879, Thomas Edison
berfokus pada menciptakan suatu
Cahaya lampu, yang
akan bertahan lama sebelum
terbakar. Masalahnya adalah
menemukan bahan yang kuat untuk
filamen, kawat kecil
di dalam bohlam yang melakukan
listrik. Akhirnya, Edison digunakan
biasa kapas benang yang
telah direndam dalam karbon.
Filamen ini tidak terbakar sama
semua itu menjadi pijar;
yaitu, ia bersinar.

Tantangan berikutnya adalah mengembangkan sistem listrik yang dapat
menyediakan orang dengan sumber praktis energi untuk daya ini baru
lampu. Edison ingin cara untuk membuat listrik praktis dan
murah. Dia dirancang dan dibangun pembangkit listrik pertama yang
mampu menghasilkan listrik dan membawanya ke rumah-rumah penduduk.
Edison Pearl Street Power Station dimulai generator yang pada
September 4, 1882, di New York City. Sekitar 85 pelanggan di bawah
Manhattan menerima daya yang cukup untuk menyalakan lampu 5.000. nya
pelanggan membayar banyak untuk listrik mereka, meskipun. Dolar di hari ini,
listrik biaya $ 5,00 per kilowatt-jam! Saat ini, biaya listrik
sekitar 12 sen per kilowatt-jam untuk pelanggan perumahan, dan
sekitar 7 sen per kilowatt-jam untuk industri.

AC/DC
Titik balik dari usia listrik datang beberapa tahun kemudian dengan
perkembangan AC (alternating current) sistem tenaga. dengan
arus bolak-balik, pembangkit listrik bisa mengangkut banyak listrik
jauh dari sebelumnya. Pada tahun 1895, George Westinghouse membuka pertama
pembangkit listrik utama di Niagara Falls menggunakan alternating current. sementara
Edison DC (arus searah) tanaman hanya dapat mengangkut listrik
dalam satu mil persegi nya Pearl Street Power Station, Niagara
Tanaman jatuh mampu mengangkut listrik lebih dari 200 mil!
Listrik tidak memiliki awal yang mudah. Banyak orang
senang dengan semua penemuan baru, tetapi beberapa orang takut
listrik dan waspada membawa ke rumah mereka. banyak sosial
kritikus hari melihat listrik sebagai mengakhiri cara, sederhana kurang sibuk
kehidupan. Penyair berkomentar bahwa lampu listrik kurang romantis daripada
lampu gas. Mungkin mereka benar, tetapi usia listrik baru bisa
tidak redup.
Pada tahun 1920, hanya dua persen dari energi di AS digunakan untuk membuat
listrik. Hari ini, sekitar 41 persen dari seluruh energi yang digunakan untuk membuat
listrik. Seperti kami menggunakan teknologi tumbuh, angka itu akan terus
meningkat.

pengertian MCB

Pengertian MCB (Miniature Circuit Breaker)


MCB (Miniature Circuit Breaker) adalah alat yang berfungsi untuk memutus hubungan listrik yang bekerja secara otomatis apabila ada arus atau beban lebih yang melebihi kapasitas nominal dari MCB tersebut.

misalnya jika terjadi short circuit atau hubung pendek atau konslet (karena pada saat terjadi short, arus listrik akan melonjak naik), maka MCB akan jatuh / trip atau mati dengan sendirinya atau secara otomatis. Sebagai pembatas beban, MCB dipasang bersama KWH meter dan disegel oleh PLN biasanya bertuas warna biru. Sedang untuk pengaman instalasi listrik di dalam alat ini bertugas menggantikan sekring biasanya warna hitam pada tuasnya. Untuk pengoperasiannya sangat sederhana yakni menggunakan tuas naik (on) dan turun (off).

Ukuran MCB sama seperti sekring ada 2Ampere, 4A, 6A, 10A, 16A, 20A, 25A, 32A, 40A, 50A dan 63A. MCB terdapat berbagai jenis untuk berbagai macam kebutuhan pemutusan arus listrik. Menurut phasa, ada 1phasa, 2phasa, 3phasa, dan menurut jenis peralatan yang akan diproteksi misal: instalasi motor 3phasa, instalasi tenaga, dan lain-lain, masing-masing berbeda jenis dan ratingnya.